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Abstract
The use of DNA microarrays opens up the possibility of measuring the expression
levels of thousands of genes simultaneously under different conditions. Time-course
experiments allow researchers to study the dynamics of gene interactions. The
inference of genetic networks from such measures can give important insights for the
understanding of a variety of biological problems. Most of the existing methods for
genetic network reconstruction require many experimental data points, or can only
be applied to the reconstruction of small subnetworks. Here we present a method that
reduces the dimensionality of the dataset and then extracts the significant dynamic
correlations among genes. The method requires a number of points achievable in
common time-course experiments. Copyright  2003 John Wiley & Sons, Ltd.
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Introduction

Understanding the structure of genetic networks is
an essential step towards the comprehension of a
variety of problems in biology. Gene interaction
networks, even in the simplest organisms, are only
starting to be elucidated in detail. The advent of
genomic technologies has made available a huge
amount of information on gene interactions from
large-scale disruption experiments (Fraser et al.,
2000; Hughes, 2000; Winzeler et al., 1999), or
from genome-wide two-hybrid assays (Ito et al.,
2001). This information is far from being detailed,
and in many cases accounts only for physical bind-
ing of unknown nature (which might even not occur
within the cell), positive or negative correlated
expression, or direct or indirect interactions among
genes. In some cases, the information provided by
DNA microarray experiments allows us to explore
such interactions from a more causal perspective.

Perturbation of genes, or different treatments,
are used to obtain a variety of gene expression
profiles reflecting their interactions in pathways.

Thus, the comparison of wild-type and mutant
profiles allows the identification of downstream
genes, whose expression is affected by the spe-
cific mutation of a gene (Holstege et al., 1998).
Nevertheless, perturbation data cannot distinguish
direct from indirect effects (Wagner, 2002). The
study of time series opens up the possibility of
taking into account the dynamics of the gene inter-
actions in the inference of the network (Li et al.,
2002). This inference process, called ‘reverse engi-
neering’, aims to determine the cause (the net-
work of interactions) from the effect (the observed
changes in gene expression levels) (D’haeseleer
et al., 2000).

The simplest, pure in silico, approach consists
of clustering the data and searching for regula-
tory control elements (e.g. promoters) in all co-
expressing genes (Brazma et al., 1998; Tavazoie
et al., 1999). Nevertheless, the information pro-
vided by these approaches is limited to genes
that are co-regulated, rather than which genes are
regulating which other genes. In network infer-
ence, the aim is to construct a model of the
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interactions between genes. This requires inference
of the causal relationships among genes or, in
other words, the reverse engineering of the net-
work architecture from the gene expression pro-
files. Boolean networks (Somogyi and Shiegoski,
1996) or Bayesian networks (Friedman et al., 2000)
have been utilized for reverse engineering of gene
networks. Other models include linear differential
equations (D’haeseleer et al., 1999) and non-linear
models (Weaver et al., 1999). Recently, probabilis-
tic graphical models have been implemented in
Boolean networks, which allowed the study of fea-
tures such as mediation, activation and inhibition in
more depth, and permitted the construction of sig-
nificant subnetworks (Pe’er et al., 2001). The num-
ber of experimental points necessary for reverse
engineering genetic networks depends on the con-
nectivity (number of possible gene interactions)
and the method used. Fully connected networks
would need up to 2n experimental measures for
n genes, which is a completely unrealistic number,
but introducing restrictions derived from previous
knowledge of the system can drastically decrease
the number of points required (D’haeseleer et al.,
2000). These restrictions usually limit the possibil-
ities of analysis to very small subnetworks.

Observation of correlation between variables has
long been used in biology as a predictor of causal
relationships. An obvious advantage of correlation
is that the number of experimental points necessary
are in the range of log(n) (D’haeseleer et al., 2000).
Time-lagged correlation has been used to study the
effect of genes at time t over them at t + 1 (Arkin
et al., 1997; Li et al., 2002). A high correlation
(positive or negative) between gene A and gene B
at t + 1 can be caused by gene A regulating gene
B (directly, or through some intermediates) or by
accident. Correlation itself is only an indication,
but not a proof, of causal relationship. This indica-
tion, which can be taken as a hypothesis, must be
tested by other means. Recently, bootstrap resam-
pling (Efron and Tibshirani, 1991) has been applied
to check the statistical reliability of gene networks
obtained from means of time-lagged partial correla-
tions (Toh and Horimoto, 2002). Another important
issue is dimensionality reduction (Mjolsness et al.,
2000; Toh and Horimoto, 2002). Gene expres-
sion profiles over time are highly redundant data
because many profiles are virtually identical. Treat-
ing them as independent pieces of information will

produce a vast amount of virtually identical solu-
tions for any method. We propose here a novel
approach that allows the inference of a network of
gene interactions at the transcriptional level from
time-lagged correlations, and check its reliability
by means of a permutation test that takes into
account the multiple testing nature of the results.
The accuracy of the network is checked by the
agreement of the results with available biologi-
cal data.

Methods

The data consist of time-course experiments. A first
step involves the exclusion of genes with flat pro-
files, which would produce artifactual positive cor-
relations. Then, the data are clustered using SOTA
(Herrero et al., 2001) to obtain a non-redundant
dataset of gene expression profiles. Finally, the
time-lagged correlation matrix is obtained. If SOTA
clustering leads to n clusters, n*(n − 1) coefficients
have to be examined. Only pairs of gene clusters
with a significant coefficient of correlation will be
taken into account as part of the network. Since we
are examining thousands of correlation coefficients,
we cannot simply use the individual p value of each
correlation coefficient to judge the significance of
the correlation; in our case, each correlation coef-
ficient is used to examine the null hypothesis of
no correlation between the expression of gene A
at time t and gene B at time t − 1. Thus, we are
carrying out thousands of hypothesis tests simul-
taneously, one corresponding to each correlation
coefficient. If we were to consider each of the cor-
relation coefficients with a p value smaller than,
say, 0.05, as significant, the Type I family-wise
(i.e. over the family of thousands of tests) error
rate would be much larger than 0.05 (the Type I
error rate is the probability of rejecting the null
hypothesis when the null is in fact true). In other
words, we would end up with an excessive num-
ber of false rejections; thus the need to account for
multiple testing.

Most multiple testing procedures are designed
to directly control the Type I family-wise error
rate (FWER; Westfall & Young, 1993). These
methods, however, can be unnecessarily conser-
vative, leading to a lack of power to detect false
hypotheses. In this paper, to obtain the signifi-
cant between gene correlations, we have chosen
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instead the approach of controlling the false dis-
covery rate (FDR). With the FDR approach we
control the expected number of false rejections
among the rejected hypotheses (for a simple expla-
nation, see Benjamini et al., 1999; also Dudoit
et al., 2002). There are different types of FDR-
controlling procedures; the one we use here is that
of Benjamini and Yekutieli (2001), which allows
for strong control (i.e. control under any combina-
tion of true and false hypotheses) of the FDR under
arbitrary dependence structures. In this paper, we
have used an FDR-adjusted p value of < 0.05
as a heuristic rule for selecting relevant corre-
lations. The unadjusted p values were obtained
with a permutation test with 1 200 000 random
permutations, where the vectors of observations
are permuted independently (see e.g. Westfall and
Young, 1993, p. 194). Thus, we are resampling
under the complete null hypothesis of indepen-
dence (i.e. that all variables are independent). By
using resampling when obtaining the p value, we
are accounting for possible non-normality in the
data.

A pair of gene clusters were considered to be
part of the network if the correlation between
them was higher than 0.7, or lower than −0.7,
with an adjusted p value < 0.05, as explained
above. To check if the network we reconstructed
had any biological meaning we studied the distri-
bution of gene ontology (GO) terms (Ashburner
et al., 2000) among the connected genes and the
unconnected genes. Clusters of genes in the net-
work are regarded as connected when they display
three or more connections to other gene clusters.
We compared the frequency of GO terms from
the categories corresponding to molecular func-
tion and biological process (Ashburner et al., 2000)
between connected and unconnected genes. We
used Fisher’s exact test: for each GO term we can
build a 2 × 2 contingency table of type of gene
(connected vs. unconnected) by presence/absence
of a GO term. Here again, we faced the problem
of multiple testing, because the comparison was
done for each of several GO terms (from 20 to
58). To account for multiple testing we adjusted
the p value from Fisher’s exact test using the minP
method of Westfall and Young (1993, algorithm
2.8, p. 66; see also Dudoit et al., 2002), based
on 10 000 random permutations of the columns of
data. The minP method allows for strong control
of the FWER.

Results and discussion

We have used the expression profile of 6178 yeast
genes across complete cell cycles of synchronized
cells (Eisen et al., 1998). We chose an individual
time series corresponding to 18 time points of alpha
factor-arrested cells and removed all the genes
whose expression profiles along all the points had a
root mean square lower than 0.3. Then, the remain-
ing 1453 gene expression profiles were clustered
using SOTA (Herrero et al., 2001) with a thresh-
old of 0.435, corresponding to a 90% probability
of having true positives in the cluster (for details,
see Herrero et al., 2001). This operation removed
virtually all the redundancies in the dataset, which
was reduced to 439 non-redundant average profiles.
These average profiles were obtained by SOTA
from the genes contained in each cluster. On aver-
age, there are 3.3 genes/cluster, although there are
122 singletons, and clusters with as many as 18
genes. We obtained the matrix of time-lagged cor-
relation for all these profiles. Then, for the 439
profiles we had to examine 439*438 = 192 282
coefficients.

After application of the procedure for select-
ing relevant correlations with an FDR-adjusted p
value < 0.05 we found a total of 381 significant
correlations. Figure 1 shows the network obtained.
The bottom of the picture represents the signif-
icant positive and negative correlations obtained
after the application of the method. The connec-
tivity of the network follows the power law typ-
ical of scale-free networks (Barabasi and Albert,
1999), with a γ parameter of 1.36, in the range of
those that describe this type of networks. This type
of connectivity, which makes biological networks
robust against perturbations (Wagner, 2000), indi-
cates that, at the connectivity level, the network we
found has a biological meaning. The distribution of
GO terms (Figure 2) shows that, in the biological
process category, the terms ‘cell–cell fusion’ and
‘cell cycle’ are significantly overrepresented in the
connected genes. On the contrary, ‘metabolism’ is
a significantly underrepresented term. These results
are in agreement with what one would expect from
such an experiment. Metabolic processes will occur
at different points during the cell cycle, and with
a complex dynamic that is very difficult to find by
studying time-lagged correlation across the whole
cell cycle. On the other hand, it is known that
processes related to ‘cell–cell fusion’ and ‘cell
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Inferring transcriptional networks 151

Figure 1. Genetic network of transcriptional interactions obtained as significant time-lagged correlations (see text). (Upper
panel) Nodes are clusters of co-expressing genes obtained upon the application of SOTA, e.g. #node 471 contains the
genes YDL194W, YEL032W and YKL116C. (Lower panel) Schematic representation of the interactions between clusters
of co-expressing genes. Black arrows indicate positive correlations and grey arrows represent negative correlations

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 148–154.
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Figure 2. The differential distribution of GO terms for biological function between highly connected genes and unconnected
genes. See text for an explanation on adjusted p values

cycle’ are coupled to events of the cell cycle
and thus these can be detected through the time-
lagged correlations. In fact, when the most con-
nected genes were analysed, many of them turned
out to be transcription factors or genes with a DNA
binding domain (Table 1). Interestingly, a few of
them are genes of unknown function, and our
results strongly suggest that these might participate

in some regulatory function in cell cycle-related
processes. The complete results are available at:
http://bioinfo.cnio.es/data/CFG02.

Here we have reported a method that combines
initial reduction of the dimensionality of the data
set with the application of a test that takes into
account the multiple testing nature of the simulta-
neous study of thousands of correlation values. The
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method is not demanding on data points and can
reconstruct large-scale networks from a number of
experimental points in the range of realistic experi-
ments. We have shown that the networks recovered
in this way are supported by existing gene func-
tion annotation. The problem of inferring genetic
networks is far from being solved, but approaches
like the one reported here constitute robust and
operative tools that provide realistic results on the
dynamics of gene interactions.
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